THE MAKING OF DESIGNER FISH FOR PASSAGE STUDIES

Karen Cogliati, Cameron Sharpe, David Noakes, Carl Schreck

CENTER

Acknowledgements

The Surrogate Project Team:

Rob Chitwood Ryan Koch Olivia Hakanson Michelle Scanlan **Crystal Herron** Kate Self Amanda Pollock Courtney Danley* Julia Unrein* Heather Stewart* Eric Billman*

Volunteers & students

The Oregon Hatchery Research Center Staff:

Ryan Couture* Joseph O'Neil Jen Krajcik Joyce Mahr* Alex Powell*

ODFW staff & hatchery managers

ODFW Researchers

Funding: Army Corps of Engineers

Pacific Northwest

US Army Corps of Engineers.

THE COMPLEX ISSUE OF DAMS

- Numerous benefits:
 - Hydroelectricity, flood control, recreation
- But, they change the landscape and environment
- Impair anadromous fish passage
 - Declines in wild fish populations
 - Hatchery fish added to the system

WILLAMETTE VALLEY PROJECT DAMS (OREGON USA)

- Adults moved above dams
- Studies evaluating juvenile salmonid movement to and through dams
- Many salmonids ESA listed

OPTION TO USE HATCHERY FISH

- Sufficient numbers to conduct rigorous tests
 - Paired release above and below dams
 - Multiple treatments and control for bypass tests

HATCHERY AND NATURAL FISH DIFFERENCES

Behavior Morphology Physiology Genetics

HATCHERY AND NATURAL REARING ENVIRONMENT

Challenge

Evaluate impacts on wild fish, with no wild fish available?

WILD FISH SURROGATE PROJECT

- Produce juvenile salmonids in artificial environments that emulate <u>specific wild fish phenotypes</u>
 - Spring Chinook salmon
 - Winter steelhead trout

VARIATION IN JUVENILE MIGRATION AND REARING

- Threshold or decision points
- ----- Migration downstream
- Rearing

WILD FISH SURROGATE PROJECT

<u>Goal:</u>

Rear and deliver wild fish surrogates to researchers

Objectives:

- 1. Establish fish needs and targets with researchers
- 2. Develop rearing protocols that produce more wild-like fish
- 3. Evaluate the quality and phenotypic accuracy of our surrogates
- 4. Describe phenotypes of naturally-reared fish to establish target phenotypes
- 5. Describe phenotypes of hatchery-reared fish to determine the effects of conventional hatchery protocols

STEP 1: COORDINATE WITH RESEARCHERS

- Planning 1-2 years in advance of fish needs
 - Rear from eyed-egg or green egg stages

- Information required from researchers:
 - Brood stock
 - Brood year
 - Time of release
 - Target size at release

STEP 1: COORDINATE WITH RESEARCHERS

- Planning 1-2 years in advance of fish needs
 - Rear from eyed-egg or green egg stages

- Information required from researchers:
 - Brood stock
 - Brood year
 - Time of release
 - Target size at release

TARGET SIZE AND TIME

TARGET SIZE AND TIME

ESTABLISHING TARGET PHENOTYPES

ALTERED REARING ENVIRONMENT

Temperature

Diet quality and pattern of delivery

Time

Density

Tank environment

CHINOOK SALMON 2017 DELIVERIES

Location	Brood Year	Target type	# fish	Status
Lookout Point	15	Yearling	600	JSATS and PIT tagged at FPGL Spring 2017
Cougar	15	Yearlings	1,500	JSATS and PIT tagged at FPGL Fall 2017
Lookout Point	16	Sub-yearling	1,625	JSATS and PIT tagged at FPGL Fall 2017
Lookout Point	16	Fry	48,000	Parental based tags for April 2017
Lookout Point	16	Parr	44,000	Parental based tags for May 2017
Lookout Point	16	Parr	4,000	Parental based tags for June 2017

CHINOOK SALMON UPCOMING REQUESTS

Location	Brood Year	Deliverable type	#	Target date	Target size (mm)
Cougar	16	Yearling	1,500	May 2018	150
Foster	16	Yearling	1,500	March-April 2018	210
Lookout Point	16	Yearling	1,625	March-April 2018	200
Cougar	17	Yearling	2,000	May 2019	150
Foster	17	Sub-yearling	1,500	Fall 2018	200
Foster	17	Yearling	1,500	Spring 2019	200
Green Peter	17	Yearling	2,000	May 2019	150
Lookout Point	17	Sub-yearling	2,000	Fall 2018	190
Lookout Point	17	Yearling	2,000	Spring 2019	200
Lookout Point	17	Fry	135,000	April 2018	45
Lookout Point	17	Parr	65,000	June 2018	97

WINTER STEELHEAD 2017 DELIVERIES

Location	Brood Year	Target type	# fish	Status
Green Peter	16	Yearling	200	Bypass study May 2017
Detroit	16	Sub-yearling	27,000	Released by ODFW January 2017

Location	Brood Year	Deliverable type	#	Target date	Target size (mm)
Foster	16	2-yr smolt	1,200	Spring 2018	160
Foster*	17	Yearling	800	Spring 2018	180

* South Santiam summer steelhead hatchery fish for comparison with winter steelhead

OUR SURROGATES ARE MORE LIKE WILD FISH MIGRANTS

- Body shape
- Osmoregulation
- Physiology
- Behaviour
- Genetics
- Fin quality
- Body composition
- Lack of early maturing males
- Migration

NATURAL LIFE HISTORY VARIATION

Phenotypic differences expressed early in life lead to different phenotypes expressed later

SURFACE FISH MORE SIMILAR TO FALL MIGRANTS

Landmark-based geometric morphometrics

FISH FROM SMALL EGGS MORE SIMILAR TO FALL MIGRANTS

Cogliati et al. 2018, Ecol and Evol

HIGH QUALITY SURROGATES

Altered rearing environment

Natural life history differences

More wild-like fish?

Surrogate wild Chinook salmon migrant

Photo by Todd Pierce

Rearing fish for parental based tagging

A case study for Lookout Point

HOW MANY FISH CAN WE RAISE?

HOW MANY FISH CAN WE RAISE?

COORDINATE WITH WILLAMETTE HATCHERY

- Number of adults
- Spawning
- Final rearing of fish in replicated design

SPAWNING

- Collected gametes at Willamette Hatchery on:
 - <u>September 6</u> for fast growing fish
 - <u>September 26</u> for slow growing fish
 - Additional fish were not available at late spawn
- Spawned 22 females with 44 males on each time
- Transported to OSU's FPGL

EARLY REARING

- 1 tray/female
- Early spawn on ambient water
- Late spawn on chilled water

FERTILITY, EGG PICKING, AND INVENTORY BY FEMALE

CHALLENGES

- Fecundity lower than expected (counting everything)
 - ~3,500
- Fertility lower than expected
 - ~ 82%

CHALLENGES

- Deformities
 - Family effect

0

MIXING SPECIFIC FAMILIES TO EQUALIZE NUMBERS

- Specific families mixed into replicate tanks when fish ready to feed
 - No mixing families across tanks
 - Keep inventory of each family, then each replicate

FAST GROWING FISH – FINAL REARING

- Moved 48,000 to Willamette Hatchery
 - 2 replicates combined into each half of raceway
- Challenge:
 - Adjusting to diet in new environment

SLOW GROWING FISH – FPGL TO RESERVOIR

- Another 48,000 provided
- USGS transported 2 replicates/day over 2 days
- Altogether provided ~96,000 fish

COULD WE RAISE EVEN MORE FISH?

A FEW CHANGES...

- Requested more females (larger buffer)
- Held females at FPGL through summer
- Spawned at FPGL
- Fertility ~90%
- Still see deformities

TAKE HOME MESSAGES

1. Continuing to produce high quality deliverables

- 2. Provided fish for parental based tagging studies
 - Kept track of families and numbers

THANK YOU

QUESTIONS?